Строительный портал. Стены и фасады. Водоснабжение и канализация. Отопление дома

Решение неравенств с модулем. Метод интервалов: решение простейших строгих неравенств Решение квадратных неравенств онлайн с подробным решением

Здравствуйте! Дорогие мои ученики, в этой статье мы научимся с вами решать показательные неравенства.

Каким бы сложным не показалось вам показательное неравенство, после некоторых преобразований (о них мы поговорим чуть позже) все неравенства сводятся к решению простейших показательных неравенств :

а х > b , a x < b и a x ≥ b , a x ≤ b .

Давайте попробуем разобраться как же решаются такие неравенства.

Мы рассмотрим решение строгих неравенств . Отличие при решении нестрогих неравенств заключается только в том, что полученные соответствующие корни включаются в ответ.

Пусть надо решить неравенство вида а f (x) > b , где a>1 и b>0 .

Посмотрите на схему решения таких неравенств (рисунок 1):

Сейчас рассмотрим конкретный пример. Решить неравенство: 5 х – 1 > 125 .

Так как 5 > 1 и 125 > 0, то
х – 1 > log 5 125, то есть
х – 1 > 3,
х > 4.

Ответ: (4; +∞) .

А каким же будет решение этого же неравенства а f (x) >b , если 0 и b>0 ?

Итак, схема на рисунке 2

Пример: Решить неравенство (1/2) 2x - 2 4

Применяя правило (рисунок 2), получаем
2х – 2 ≤ log 1/2 4,
2х – 2 ≤ –2,
2х ≤ 0,
х ≤ 0.

Ответ: (–∞; 0] .

Снова рассмотрим это же неравенство а f (x) > b , если a>0 и b<0 .

Итак, схема на рисунке 3:


Пример решения неравенства (1/3) х + 2 > –9 . Как мы замечаем, какое бы число мы не подставили вместо х, (1/3) х + 2 всегда больше нуля.

Ответ: (–∞; +∞) .

А как же решаются неравенства вида а f (x) < b , где a>1 и b>0 ?

Схема на рисунке 4:

И следующий пример: 3 3 – х ≥ 8 .
Поскольку 3 > 1 и 8 > 0, то
3 – х > log 3 8, то есть
–х > log 3 8 – 3,
х < 3 – log 3 8.

Ответ: (0; 3–log 3 8) .

Как же измениться решение неравенства а f (x) < b , при 0 и b>0 ?

Схема на рисунке 5:

И следующий пример: Решить неравенство 0,6 2х – 3 < 0,36 .

Cледуя схеме на рисунке 5, получаем
2х – 3 > log 0,6 0,36 ,
2х – 3 > 2,
2х > 5,
х > 2,5

Ответ: (2,5; +∞) .

Рассмотрим последнюю схему решения неравенства вида а f (x) < b , при a>0 и b<0 , представленную на рисунке 6:

Например, решим неравенство:

Замечаем, что какое бы число мы не подставили вместо х, левая часть неравенства всегда больше нуля, а у нас это выражение меньше -8, т.е. и нуля, значит решений нет.

Ответ: решений нет .

Зная как решаются простейшие показательные неравенства, можно приступить и к решению показательных неравенств .

Пример 1.

Найти наибольшее целое значение х, удовлетворяющее неравеству

Так как 6 х больше нуля (ни при каком х знаменатель в ноль не обращается), умножим обе части неравенства на 6 х, получим:

440 – 2· 6 2х > 8, тогда
– 2· 6 2х > 8 – 440,
– 2· 6 2х > – 332,
6 2х < 216,
2х < 3,

x < 1,5. Наибольшее целое число из помежутка (–∞; 1,5) это число 1.

Ответ: 1 .

Пример 2 .

Решить неравенство 2 2 x – 3·2 x + 2 ≤ 0

Обозначим 2 х через у, получим неравенство у 2 – 3у + 2 ≤ 0, решим это квадратное неравенство.

у 2 – 3у +2 = 0,
у 1 = 1 и у 2 = 2.

Ветви параболы направлены вверх, изобразим график:

Тогда решением неравенства будет неравенство 1 < у < 2, вернемся к нашей переменной х и получим неравенство 1< 2 х < 2, решая которое и найдем ответ 0 < x < 1.

Ответ: (0; 1) .

Пример 3 . Решите неравенство 5 x +1 – 3 x +2 < 2·5 x – 2·3 x –1
Соберем выражения с одинаковыми основаниями в одной части неравенства

5 x +1 – 2·5 x < 3 x +2 – 2·3 x –1

Вынесем в левой части неравенства за скобки 5 x , а в правой части неравенства 3 х и получим неравенство

5 х (5 – 2) < 3 х (9 – 2/3),
3·5 х < (25/3)·3 х

Разделим обе части неравенства на выражение 3·3 х, знак неравенства не изменится, так как 3·3 х положительное число, получим неравенство:

х < 2 (так как 5/3 > 1).

Ответ: (–∞; 2) .

Если у вас возникнут вопросы по решению показательных неравенств или вы захотите попрактиковаться в решении подобных примеров, записывайтесь ко мне на уроки. Репетитор Валентина Галиневская .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Неравенство это выражение с, ≤, или ≥. Например, 3x - 5 Решить неравенство означает найти все значения переменных, при которых это неравенство верно. Каждое из этих чисел является решением неравенства, а множество всех таких решений является его множеством решений . Неравенства, которые имеют то же множество решений, называются эквивалентными неравенствами .

Линейные неравенства

Принципы решения неравенств аналогичны принципам решения уравнений.

Принципы решения неравенств
Для любых вещественных чисел a, b, и c :
Принцип прибавления неравенств : Если a Принцип умножения для неравенств : Если a 0 верно, тогда ac Если a bc также верно.
Подобные утверждения также применяются для a ≤ b.

Когда обе стороны неравенства умножаются на отрицательное число, необходимо полностью изменить знак неравенства.
Неравенства первого уровня, как в примере 1 (ниже), называются линейными неравенствами .

Пример 1 Решите каждое из следующих неравенств. Затем изобразите множество решений.
a) 3x - 5 b) 13 - 7x ≥ 10x - 4
Решение
Любое число, меньше чем 11/5, является решением.
Множество решений есть {x|x
Чтобы сделать проверку, мы можем нарисовать график y 1 = 3x - 5 и y 2 = 6 - 2x. Тогда отсюда видно, что для x
Множеством решений есть {x|x ≤ 1}, или (-∞, 1]. График множества решений изображён ниже.

Двойные неравенства

Когда два неравенства соединены словом и , или , тогда формируется двойное неравенство . Двойное неравенство, как
-3 и 2x + 5 ≤ 7
называется соединённым , потому что в нём использовано и . Запись -3 Двойные неравенства могут быть решены с использованием принципов прибавления и умножения неравенств.

Пример 2 Решите -3 Решение У нас есть

Множество решений {x|x ≤ -1 или x > 3}. Мы можем также написать решение с использованием обозначения интервала и символ для объединения или включения обоих множеств: (-∞ -1] (3, ∞). График множества решений изображен ниже.

Для проверки, нарисуем y 1 = 2x - 5, y 2 = -7, и y 3 = 1. Заметьте, что для {x|x ≤ -1 или x > 3}, y 1 ≤ y 2 или y 1 > y 3 .

Неравенства с абсолютным значением (модулем)

Неравенства иногда содержат модули. Следующие свойства используются для их решения.
Для а > 0 и алгебраического выражения x:
|x| |x| > a эквивалентно x или x > a.
Подобные утверждения и для |x| ≤ a и |x| ≥ a.

Например,
|x| |y| ≥ 1 эквивалентно y ≤ -1 или y ≥ 1;
и |2x + 3| ≤ 4 эквивалентно -4 ≤ 2x + 3 ≤ 4.

Пример 4 Решите каждое из следующих неравенств. Постройте график множества решений.
a) |3x + 2| b) |5 - 2x| ≥ 1

Решение
a) |3x + 2|

Множеством решением есть {x|-7/3
b) |5 - 2x| ≥ 1
Множеством решением есть {x|x ≤ 2 или x ≥ 3}, или (-∞, 2] , а также все точки луча .

Практичные математики обычно говорят так: зачем нам, решая неравенство ах 2 + bх + с > 0, аккуратно строить параболу график квадратичной функции

у = ах 2 + bх + с (как это было сделано в примере 1)? Достаточно сделать схематический набросок графика, для чего следует лишь найти корни квадратного трехчлена (точки пересечения параболы с осью х) и определить, куда направлены ветви параболы - вверх или вниз. Этот схематический набросок даст наглядное истолкование решению неравенства.

Пример 2. Решить неравенство - 2х 2 + Зх + 9 < 0.
Решение.

1) Найдем корни квадратного трехчлена - 2х 2 + Зх + 9: х 1 = 3; х 2 = - 1,5.

2) Парабола, служащая графиком функции у = -2х 2 + Зх + 9, пересекает ось х в точках 3 и - 1,5, а ветви параболы направлены вниз, поскольку старший коэффициент - отрицательное число - 2. На рис. 118 представлен набросок графика.

3) Используя рис. 118, делаем вывод: у < 0 на тех промежутках оси х, где график расположен ниже оси х, т.е. на открытом луче (-оо, -1,5) или на открытом луче C, +оо).
Ответ: х < -1,5; х > 3.

Пример 3. Решить неравенство 4х 2 - 4х + 1 < 0.
Решение.

1) Из уравнения 4х 2 - 4х + 1 = 0 находим .

2) Квадратный трехчлен имеет один корень ; это значит, что парабола, служащая графиком квадратного трехчлена, не пересекает ось х, а касается ее в точке . Ветви параболы направлены вверх (рис. 119.)

3) С помощью геометрической модели, представленной на рис. 119, устанавливаем, что заданное неравенство выполняется только в точке , поскольку при всех других значениях х ординаты графика положительны.
Ответ: .
Вы, наверное, заметили, что фактически в примерах 1, 2, 3 использовался вполне определенный алгоритм решения квадратных неравенств, оформим его.

Алгоритм решения квадратного неравенства ах 2 + bх + 0 0 (ах 2 + bх + с < 0)

На первом шаге этого алгоритма требуется найти корни квадратного трехчлена. Но ведь корни могут и не существовать, что же делать? Тогда алгоритм неприменим, значит, надо рассуждать как-то по-другому. Ключ к этим рассуждениям дают следующие теоремы.

Иными словами, если D < 0, а > 0, то неравенство ах 2 + bх + с > 0 выполняется при всех х; напротив, неравенство ах 2 + bх + с < 0 не имеет решений.
Доказательство. Графиком функции у = ах 2 + bх + с является парабола, ветви которой направлены вверх (поскольку а > 0) и которая не пересекает ось х, так как корней у квадратного трехчлена по условию нет. График представлен на рис. 120. Видим, что при всех х график расположен выше оси х, а это значит, что при всех х выполняется неравенство ах 2 + bх + с > 0, что и требовалось доказать.

Иными словами, если D < 0, а < 0, то неравенство ах 2 + bх + с < 0 выполняется при всех х; напротив, неравенство ах 2 + bх + с > 0 не имеет решений.

Доказательство. Графиком функции у = ах 2 + bх +с является парабола, ветви которой направлены вниз (поскольку а < 0) и которая не пересекает ось х, так как корней у квадратного трехчлена по условию нет. График представлен на рис. 121. Видим, что при всех х график расположен ниже оси х, а это значит, что при всех х выполняется неравенство ах 2 + bх + с < 0, что и требовалось доказать.

Пример 4 . Решить неравенство:

а) 2х 2 - х + 4 >0; б) -х 2 + Зх - 8 >0.

а) Найдем дискриминант квадратного трехчлена 2х 2 - х + 4. Имеем D = (-1) 2 - 4 2 4 = - 31 < 0.
Старший коэффициент трехчлена (число 2) положителен.

Значит, по теореме 1, при всех х выполняется неравенство 2x 2 - х + 4 > 0, т. е. решением заданного неравенства служит вся (-00 , + 00).

б) Найдем дискриминант квадратного трехчлена - х 2 + Зх - 8. Имеем D = З2 - 4 (- 1) (- 8) = - 23 < 0. Старший коэффициент трехчлена (число - 1) отрицателен. Следовательно, по теореме 2, при всех х выполняется неравенство - х 2 + Зx - 8 < 0. Это значит, что неравенство - х 2 + Зх - 8 0 не выполняется ни при каком значении х, т. е. заданное неравенство не имеет решений.

Ответ: а) (-00 , + 00); б) нет решений.

В следующем примере мы познакомимся еще с одним способом рассуждений, который применяется при решении квадратных неравенств.

Пример 5. Решить неравенство Зх 2 - 10х + 3 < 0.
Решение. Разложим квадратный трехчлен Зx 2 - 10x + 3 на множители. Корнями трехчлена являются числа 3 и , поэтому воспользовавшись ах 2 + bх + с = а (х - x 1)(x - х 2),получим Зx 2 - 10х + 3 = 3(х - 3) (х - )
Отметим на числовой прямой корни трехчлена: 3 и (рис. 122).

Пусть х > 3; тогда x-3>0 и x->0, а значит, и произведение 3(х - 3)(х - ) положительно. Далее, пусть < х < 3; тогда x-3< 0, а х- >0. Следовательно, произведение 3(х-3)(х-) отрицательно. Пусть, наконец, х <; тогда x-3< 0 и x- < 0. Но в таком случае произведение
3(x -3)(x -) положительно.

Подводя итог рассуждениям, приходим к выводу: знаки квадратного трехчлена Зx 2 - 10х + 3 изменяются так, как показано на рис. 122. Нас же интересует, при каких х квадратный трехчлен принимает отрицательные значения. Из рис. 122 делаем вывод: квадратный трехчлен Зx 2 - 10х + 3 принимает отрицательные значения для любого значения х из интервала (, 3)
Ответ (, 3), или < х < 3.

Замечание. Метод рассуждений, который мы применили в примере 5, обычно называют методом интервалов (или методом промежутков). Он активно используется в математике для решения рациональных неравенств. В 9-м классе мы изучим метод интервалов более детально.

Пример 6 . При каких значениях параметра р квадратное уравнение х 2 - 5х + р 2 = 0:
а) имеет два различных корня;

б) имеет один корень;

в) не имеет -корней?

Решение. Число корней квадратного уравнения зависит от знака его дискриминанта D. В данном случае находим D = 25 - 4р 2 .

а) Квадратное уравнение имеет два различных корня, если D>0, значит, задача сводится к решению неравенства 25 - 4р 2 > 0. Умножим обе части этого неравенства на -1 (не забыв изменить при этом знак неравенства). Получим равносильное неравенство 4р 2 - 25 < 0. Далее имеем 4 (р - 2,5) (р + 2,5) < 0.

Знаки выражения 4(р - 2,5) (р + 2,5) указаны на рис. 123.

Делаем вывод, что неравенство 4(р - 2,5)(р + 2,5) < 0 выполняется для всех значений р из интервала (-2,5; 2,5). Именно при этих значениях параметра р данное квадратное уравнение имеет два различных корня.

б) квадратное уравнение имеет один корень, если D - 0.
Как мы установили выше, D = 0 при р = 2,5 или р = -2,5.

Именно при этих значениях параметра р данное квадратное уравнение имеет только один корень.

в) Квадратное уравнение не имеет корней, если D < 0. Решим неравенство 25 - 4р 2 < 0.

Получаем 4р 2 - 25 > 0; 4 (р-2,5)(р + 2,5)>0, откуда (см. рис. 123) р < -2,5; р > 2,5. При этих значениях параметра р данное квадратное уравнение не имеет корней.

Ответ: а) при р (-2,5, 2,5);

б) при р = 2,5 илир = -2,5;
в) при р < - 2,5 или р > 2,5.

Мордкович А. Г., Алгебра . 8 кл.: Учеб. для общеобразоват. учреждений.- 3-е изд., доработ. - М.: Мнемозина, 2001. - 223 с: ил.

Помощь школьнику онлайн , Математика для 8 класса скачать , календарно-тематическое планирование

Для начала — немного лирики, чтобы почувствовать проблему, которую решает метод интервалов. Допустим, нам надо решить вот такое неравенство:

(x − 5)(x + 3) > 0

Какие есть варианты? Первое, что приходит в голову большинству учеников — это правила «плюс на плюс дает плюс» и «минус на минус дает плюс». Поэтому достаточно рассмотреть случай, когда обе скобки положительны: x − 5 > 0 и x + 3 > 0. Затем также рассмотрим случай, когда обе скобки отрицательны: x − 5 < 0 и x + 3 < 0. Таким образом, наше неравенство свелось к совокупности двух систем, которая, впрочем, легко решается:

Более продвинутые ученики вспомнят (может быть), что слева стоит квадратичная функция, график которой — парабола. Причем эта парабола пересекает ось OX в точках x = 5 и x = −3. Для дальнейшей работы надо раскрыть скобки. Имеем:

x 2 − 2x − 15 > 0

Теперь понятно, что ветви параболы направлены вверх, т.к. коэффициент a = 1 > 0. Попробуем нарисовать схему этой параболы:

Функция больше нуля там, где она проходит выше оси OX . В нашем случае это интервалы (−∞ −3) и (5; +∞) — это и есть ответ.

Обратите внимание: на рисунке изображена именно схема функции , а не ее график. Потому что для настоящего графика надо считать координаты, рассчитывать смещения и прочую хрень, которая нам сейчас совершенно ни к чему.

Почему эти методы неэффективны?

Итак, мы рассмотрели два решения одного и того же неравенства. Оба они оказались весьма громоздкими. В первом решении возникает — вы только вдумайтесь! — совокупность систем неравенств. Второе решение тоже не особо легкое: нужно помнить график параболы и еще кучу мелких фактов.

Это было очень простое неравенство. В нем всего 2 множителя. А теперь представьте, что множителей будет не 2, а хотя бы 4. Например:

(x − 7)(x − 1)(x + 4)(x + 9) < 0

Как решать такое неравенство? Перебирать все возможные комбинации плюсов и минусов? Да мы уснем быстрее, чем найдем решение. Рисовать график — тоже не вариант, поскольку непонятно, как ведет себя такая функция на координатной плоскости.

Для таких неравенств нужен специальный алгоритм решения, который мы сегодня и рассмотрим.

Что такое метод интервалов

Метод интервалов — это специальный алгоритм, предназначенный для решения сложных неравенств вида f (x ) > 0 и f (x ) < 0. Алгоритм состоит из 4 шагов:

  1. Решить уравнение f (x ) = 0. Таким образом, вместо неравенства получаем уравнение, которое решается намного проще;
  2. Отметить все полученные корни на координатной прямой. Таким образом, прямая разделится на несколько интервалов;
  3. Выяснить знак (плюс или минус) функции f (x ) на самом правом интервале. Для этого достаточно подставить в f (x ) любое число, которое будет правее всех отмеченных корней;
  4. Отметить знаки на остальных интервалах. Для этого достаточно запомнить, что при переходе через каждый корень знак меняется.

Вот и все! После этого останется лишь выписать интервалы, которые нас интересуют. Они отмечены знаком «+», если неравенство имело вид f (x ) > 0, или знаком «−», если неравенство имеет вид f (x ) < 0.

На первый взгляд может показаться, что метод интервалов — это какая-то жесть. Но на практике все будет очень просто. Стоит чуть-чуть потренироваться — и все станет понятно. Взгляните на примеры — и убедитесь в этом сами:

Задача. Решите неравенство:

(x − 2)(x + 7) < 0

Работаем по методу интервалов. Шаг 1: заменяем неравенство уравнением и решаем его:

(x − 2)(x + 7) = 0

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю:

x − 2 = 0 ⇒ x = 2;
x + 7 = 0 ⇒ x = −7.

Получили два корня. Переходим к шагу 2: отмечаем эти корни на координатной прямой. Имеем:

Теперь шаг 3: находим знак функции на самом правом интервале (правее отмеченной точки x = 2). Для этого надо взять любое число, которое больше числа x = 2. Например, возьмем x = 3 (но никто не запрещает взять x = 4, x = 10 и даже x = 10 000). Получим:

f (x ) = (x − 2)(x + 7);
x = 3;
f (3) = (3 − 2)(3 + 7) = 1 · 10 = 10;

Получаем, что f (3) = 10 > 0, поэтому в самом правом интервале ставим знак плюс.

Переходим к последнему пункту — надо отметить знаки на остальных интервалах. Помним, что при переходе через каждый корень знак должен меняться. Например, справа от корня x = 2 стоит плюс (мы убедились в этом на предыдущем шаге), поэтому слева обязан стоять минус.

Этот минус распространяется на весь интервал (−7; 2), поэтому справа от корня x = −7 стоит минус. Следовательно, слева от корня x = −7 стоит плюс. Осталось отметить эти знаки на координатной оси. Имеем:

Вернемся к исходному неравенству, которое имело вид:

(x − 2)(x + 7) < 0

Итак, функция должна быть меньше нуля. Значит, нас интересует знак минус, который возникает лишь на одном интервале: (−7; 2). Это и будет ответ.

Задача. Решите неравенство:

(x + 9)(x − 3)(1 − x ) < 0

Шаг 1: приравниваем левую часть к нулю:

(x + 9)(x − 3)(1 − x ) = 0;
x + 9 = 0 ⇒ x = −9;
x − 3 = 0 ⇒ x = 3;
1 − x = 0 ⇒ x = 1.

Помните: произведение равно нулю, когда хотя бы один из множителей равен нулю. Именно поэтому мы вправе приравнять к нулю каждую отдельную скобку.

Шаг 2: отмечаем все корни на координатной прямой:

Шаг 3: выясняем знак самого правого промежутка. Берем любое число, которое больше, чем x = 1. Например, можно взять x = 10. Имеем:

f (x ) = (x + 9)(x − 3)(1 − x );
x = 10;
f (10) = (10 + 9)(10 − 3)(1 − 10) = 19 · 7 · (−9) = − 1197;
f (10) = −1197 < 0.

Шаг 4: расставляем остальные знаки. Помним, что при переходе через каждый корень знак меняется. В итоге наша картинка будет выглядеть следующим образом:

Вот и все. Осталось лишь выписать ответ. Взгляните еще раз на исходное неравенство:

(x + 9)(x − 3)(1 − x ) < 0

Это неравенство вида f (x ) < 0, т.е. нас интересуют интервалы, отмеченные знаком минус. А именно:

x ∈ (−9; 1) ∪ (3; +∞)

Это и есть ответ.

Замечание по поводу знаков функции

Практика показывает, что наибольшие трудности в методе интервалов возникают на последних двух шагах, т.е. при расстановке знаков. Многие ученики начинают путаться: какие надо брать числа и где ставить знаки.

Чтобы окончательно разобраться в методе интервалов, рассмотрим два замечания, на которых он построен:

  1. Непрерывная функция меняет знак только в тех точках, где она равна нулю . Такие точки разбивают координатную ось на куски, внутри которых знак функции никогда не меняется. Вот зачем мы решаем уравнение f (x ) = 0 и отмечаем найденные корни на прямой. Найденные числа — это «пограничные» точки, отделяющие плюсы от минусов.
  2. Чтобы выяснить знак функции на каком-либо интервале, достаточно подставить в функцию любое число из этого интервала. Например, для интервала (−5; 6) мы вправе брать x = −4, x = 0, x = 4 и даже x = 1,29374, если нам захочется. Почему это важно? Да потому что многих учеников начинают грызть сомнения. Мол, что если для x = −4 мы получим плюс, а для x = 0 — минус? А ничего — такого никогда не будет. Все точки на одном интервале дают один и тот же знак. Помните об этом.

Вот и все, что нужно знать про метод интервалов. Конечно, мы разобрали его в самом простом варианте. Существуют более сложные неравенства — нестрогие, дробные и с повторяющимися корнями. Для них тоже можно применять метод интервалов, но это тема для отдельного большого урока.

Теперь хотел бы разобрать продвинутый прием, который резко упрощает метод интервалов. Точнее, упрощение затрагивает только третий шаг — вычисление знака на самом правом куске прямой. По каким-то причинам этот прием не проходят в школах (по крайней мере, мне никто такого не объяснял). А зря — ведь на самом деле этот алгоритм очень прост.

Итак, знак функции на правом куске числовой оси. Этот кусок имеет вид (a ; +∞), где a — самый большой корень уравнения f (x ) = 0. Чтобы не взрывать мозг, рассмотрим конкретный пример:

(x − 1)(2 + x )(7 − x ) < 0;
f (x ) = (x − 1)(2 + x )(7 − x );
(x − 1)(2 + x )(7 − x ) = 0;
x − 1 = 0 ⇒ x = 1;
2 + x = 0 ⇒ x = −2;
7 − x = 0 ⇒ x = 7;

Мы получили 3 корня. Перечислим их в порядке возрастания: x = −2, x = 1 и x = 7. Очевидно, что наибольший корень — это x = 7.

Для тех, кому легче рассуждать графически, я отмечу эти корни на координатной прямой. Посмотрим, что получится:

Требуется найти знак функции f (x ) на самом правом интервале, т.е. на (7; +∞). Но как мы уже отмечали, для определения знака можно взять любое число из этого интервала. Например, можно взять x = 8, x = 150 и т.д. А теперь — тот самый прием, который не проходят в школах: давайте в качестве числа возьмем бесконечность. Точнее, плюс бесконечность , т.е. +∞.

«Ты че, обкурился? Как можно подставить в функцию бесконечность?» — возможно, спросите вы. Но задумайтесь: нам ведь не нужно само значение функции, нам нужен только знак. Поэтому, например, значения f (x ) = −1 и f (x ) = −938 740 576 215 значат одно и то же: функция на данном интервале отрицательна. Поэтому все, что от вас требуется — найти знак, который возникает на бесконечности, а не значение функции.

На самом деле, подставлять бесконечность очень просто. Вернемся к нашей функции:

f (x ) = (x − 1)(2 + x )(7 − x )

Представьте, что x — это очень большое число. Миллиард или даже триллион. Теперь посмотрим, что будет происходить в каждой скобке.

Первая скобка: (x − 1). Что будет, если из миллиарда вычесть единицу? Получится число, не особо отличающееся от миллиарда, и это число будет положительным. Аналогично со второй скобкой: (2 + x ). Если к двойке прибавить миллиард, по получим миллиард с копейками — это положительное число. Наконец, третья скобка: (7 − x ). Здесь будет минус миллиард, от которого «отгрызли» жалкий кусочек в виде семерки. Т.е. полученное число мало чем будет отличаться от минус миллиарда — оно будет отрицательным.

Осталось найти знак всего произведения. Поскольку в первых скобках у нас был плюс, а в последней — минус, получаем следующую конструкцию:

(+) · (+) · (−) = (−)

Итоговый знак — минус! И неважно, чему равно значение самой функции. Главное, что это значение — отрицательное, т.е. на самом правом интервале стоит знак минус. Осталось выполнить четвертый шаг метода интервалов: расставить все знаки. Имеем:

Исходное неравенство имело вид:

(x − 1)(2 + x )(7 − x ) < 0

Следовательно, нас интересуют интервалы, отмеченные знаком минус. Выписываем ответ:

x ∈ (−2; 1) ∪ (7; +∞)

Вот и весь прием, который я хотел рассказать. В заключение — еще одно неравенство, которое решается методом интервалов с привлечением бесконечности. Чтобы визуально сократить решение, я не буду писать номера шагов и развернутые комментарии. Напишу только то, что действительно надо писать при решении реальных задач:

Задача. Решите неравенство:

x (2x + 8)(x − 3) > 0

Заменяем неравенство уравнением и решаем его:

x (2x + 8)(x − 3) = 0;
x = 0;
2x + 8 = 0 ⇒ x = −4;
x − 3 = 0 ⇒ x = 3.

Отмечаем все три корня на координатной прямой (сразу со знаками):

Справа на координатной оси стоит плюс, т.к. функция имеет вид:

f (x ) = x (2x + 8)(x − 3)

А если подставить бесконечность (например, миллиард), получим три положительных скобки. Поскольку исходное выражение должно быть больше нуля, нас интересуют только плюсы. Осталось выписать ответ:

x ∈ (−4; 0) ∪ (3; +∞)

Сегодня, друзья, не будет никаких соплей и сантиментов. Вместо них я без лишних вопросов отправлю вас в бой с одним из самых грозных противников в курсе алгебры 8—9 класса.

Да, вы всё правильно поняли: речь идёт о неравенствах с модулем. Мы рассмотрим четыре основных приёма, с помощью которых вы научитесь решать порядка 90% таких задач. А что с остальными 10%? Что ж, о них мы поговорим в отдельном уроке.:)

Однако перед тем, как разбирать какие-то там приёмы, хотелось бы напомнить два факта, которые уже необходимо знать. Иначе вы рискуете вообще не понять материал сегодняшнего урока.

Что уже нужно знать

Капитан Очевидность как бы намекает, что для решения неравенств с модулем необходимо знать две вещи:

  1. Как решаются неравенства;
  2. Что такое модуль.

Начнём со второго пункта.

Определение модуля

Тут всё просто. Есть два определения: алгебраическое и графическое. Для начала — алгебраическое:

Определение. Модуль числа $x$ — это либо само это число, если оно неотрицательно, либо число, ему противоположное, если исходный $x$ — всё-таки отрицателен.

Записывается это так:

\[\left| x \right|=\left\{ \begin{align} & x,\ x\ge 0, \\ & -x,\ x \lt 0. \\\end{align} \right.\]

Говоря простым языком, модуль — это «число без минуса». И именно в этой двойственности (где-то с исходным числом ничего не надо делать, а где-то придётся убрать какой-то там минус) и заключается вся сложность для начинающих учеников.

Есть ещё геометрическое определение. Его тоже полезно знать, но обращаться к нему мы будем лишь в сложных и каких-то специальных случаях, где геометрический подход удобнее алгебраического (спойлер: не сегодня).

Определение. Пусть на числовой прямой отмечена точка $a$. Тогда модулем $\left| x-a \right|$ называется расстояние от точки $x$ до точки $a$ на этой прямой.

Если начертить картинку, то получится что-то типа этого:


Графическое определение модуля

Так или иначе, из определения модуля сразу следует его ключевое свойство: модуль числа всегда является величиной неотрицательной . Этот факт будет красной нитью идти через всё наше сегодняшнее повествование.

Решение неравенств. Метод интервалов

Теперь разберёмся с неравенствами. Их существует великое множество, но наша задача сейчас — уметь решать хотя бы самые простые из них. Те, которые сводятся к линейным неравенствам, а также к методу интервалов.

На эту тему у меня есть два больших урока (между прочем, очень, ОЧЕНЬ полезных — рекомендую изучить):

  1. Метод интервалов для неравенств (особенно посмотрите видео);
  2. Дробно-рациональные неравенства — весьма объёмный урок, но после него у вас вообще не останется каких-либо вопросов.

Если вы всё это знаете, если фраза «перейдём от неравенства к уравнению» не вызывает у вас смутное желание убиться об стену, то вы готовы: добро пожаловать в ад к основной теме урока.:)

1. Неравенства вида «Модуль меньше функции»

Это одна из самых часто встречающихся задач с модулями. Требуется решить неравенство вида:

\[\left| f \right| \lt g\]

В роли функций $f$ и $g$ может выступать что угодно, но обычно это многочлены. Примеры таких неравенств:

\[\begin{align} & \left| 2x+3 \right| \lt x+7; \\ & \left| {{x}^{2}}+2x-3 \right|+3\left(x+1 \right) \lt 0; \\ & \left| {{x}^{2}}-2\left| x \right|-3 \right| \lt 2. \\\end{align}\]

Все они решаются буквально в одну строчку по схеме:

\[\left| f \right| \lt g\Rightarrow -g \lt f \lt g\quad \left(\Rightarrow \left\{ \begin{align} & f \lt g, \\ & f \gt -g \\\end{align} \right. \right)\]

Нетрудно заметить, что избавляемся от модуля, но взамен получаем двойное неравенство (или, что тоже самое, систему из двух неравенств). Зато этот переход учитывает абсолютно все возможные проблемы: если число под модулем положительно, метод работает; если отрицательно — всё равно работает; и даже при самой неадекватной функции на месте $f$ или $g$ метод всё равно сработает.

Естественно, возникает вопрос: а проще нельзя? К сожалению, нельзя. В этом вся фишка модуля.

Впрочем, хватит философствовать. Давайте решим парочку задач:

Задача. Решите неравенство:

\[\left| 2x+3 \right| \lt x+7\]

Решение. Итак, перед нами классическое неравенство вида «модуль меньше» — даже преобразовывать нечего. Работаем по алгоритму:

\[\begin{align} & \left| f \right| \lt g\Rightarrow -g \lt f \lt g; \\ & \left| 2x+3 \right| \lt x+7\Rightarrow -\left(x+7 \right) \lt 2x+3 \lt x+7 \\\end{align}\]

Не торопитесь раскрывать скобки, перед которыми стоит «минус»: вполне возможно, что из-за спешки вы допустите обидную ошибку.

\[-x-7 \lt 2x+3 \lt x+7\]

\[\left\{ \begin{align} & -x-7 \lt 2x+3 \\ & 2x+3 \lt x+7 \\ \end{align} \right.\]

\[\left\{ \begin{align} & -3x \lt 10 \\ & x \lt 4 \\ \end{align} \right.\]

\[\left\{ \begin{align} & x \gt -\frac{10}{3} \\ & x \lt 4 \\ \end{align} \right.\]

Задача свелась к двум элементарным неравенствам. Отметим их решения на параллельных числовых прямых:

Пересечение множеств

Пересечением этих множеств и будет ответ.

Ответ: $x\in \left(-\frac{10}{3};4 \right)$

Задача. Решите неравенство:

\[\left| {{x}^{2}}+2x-3 \right|+3\left(x+1 \right) \lt 0\]

Решение. Это задание уже чуть посложнее. Для начала уединим модуль, перенеся второе слагаемое вправо:

\[\left| {{x}^{2}}+2x-3 \right| \lt -3\left(x+1 \right)\]

Очевидно, перед нами вновь неравенство вида «модуль меньше», поэтому избавляемся от модуля по уже известному алгоритму:

\[-\left(-3\left(x+1 \right) \right) \lt {{x}^{2}}+2x-3 \lt -3\left(x+1 \right)\]

Вот сейчас внимание: кто-то скажет, что я немного извращенец со всеми этими скобками. Но ещё раз напомню, что наша ключевая цель — грамотно решить неравенство и получить ответ . Позже, когда вы в совершенстве освоите всё, о чём рассказано в этом уроке, можете сами извращаться как хотите: раскрывать скобки, вносить минусы и т.д.

А мы для начала просто избавимся от двойного минуса слева:

\[-\left(-3\left(x+1 \right) \right)=\left(-1 \right)\cdot \left(-3 \right)\cdot \left(x+1 \right)=3\left(x+1 \right)\]

Теперь раскроем все скобки в двойном неравенстве:

Переходим к двойному неравенству. В этот раз выкладки будут посерьёзнее:

\[\left\{ \begin{align} & {{x}^{2}}+2x-3 \lt -3x-3 \\ & 3x+3 \lt {{x}^{2}}+2x-3 \\ \end{align} \right.\]

\[\left\{ \begin{align} & {{x}^{2}}+5x \lt 0 \\ & {{x}^{2}}-x-6 \gt 0 \\ \end{align} \right.\]

Оба неравенства являются квадратными и решаются методом интервалов (потому и говорю: если не знаете, что это такое, лучше пока не браться за модули). Переходим к уравнению в первом неравенстве:

\[\begin{align} & {{x}^{2}}+5x=0; \\ & x\left(x+5 \right)=0; \\ & {{x}_{1}}=0;{{x}_{2}}=-5. \\\end{align}\]

Как видим, на выходе получилось неполное квадратное уравнение, которое решается элементарно. Теперь разберёмся со вторым неравенством системы. Там придётся применить теорему Виета:

\[\begin{align} & {{x}^{2}}-x-6=0; \\ & \left(x-3 \right)\left(x+2 \right)=0; \\& {{x}_{1}}=3;{{x}_{2}}=-2. \\\end{align}\]

Отмечаем полученные числа на двух параллельных прямых (отдельная для первого неравенства и отдельная для второго):

Опять же, поскольку мы решаем систему неравенств, нас интересует пересечение заштрихованных множеств: $x\in \left(-5;-2 \right)$. Это и есть ответ.

Ответ: $x\in \left(-5;-2 \right)$

Думаю, после этих примеров схема решения предельно ясна:

  1. Уединить модуль, перенеся все другие слагаемые в противоположную часть неравенства. Таким образом мы получим неравенство вида $\left| f \right| \lt g$.
  2. Решить это неравенство, избавившись от модуля по описанной выше схеме. В какой-то момент потребуется перейти от двойного неравенства к системе из двух самостоятельных выражений, каждое из которых уже можно решать отдельно.
  3. Наконец, останется лишь пересечь решения этих двух самостоятельных выражений — и всё, мы получим окончательный ответ.

Аналогичный алгоритм существует и для неравенств следующего типа, когда модуль больше функции. Однако там есть парочка серьёзных «но». Об этих «но» мы сейчас и поговорим.

2. Неравенства вида «Модуль больше функции»

Выглядят они так:

\[\left| f \right| \gt g\]

Похоже на предыдущее? Похоже. И тем не менее решаются такие задачи совсем по-другому. Формально схема следующая:

\[\left| f \right| \gt g\Rightarrow \left[ \begin{align} & f \gt g, \\ & f \lt -g \\\end{align} \right.\]

Другими словами, мы рассматриваем два случая:

  1. Сначала просто игнорируем модуль — решаем обычное неравенство;
  2. Затем по сути раскрываем модуль со знаком «минус», а затем умножаем обе части неравенства на −1, меня при этом знак.

При этом варианты объединены квадратной скобкой, т.е. перед нами совокупность двух требований.

Обратите внимание ещё раз: перед нами не система, а совокупность, поэтому в ответе множества объединяются, а не пересекаются . Это принципиальное отличие от предыдущего пункта!

Вообще, с объединениями и пересечениями у многих учеников сплошная путаница, поэтому давайте разберёмся в этом вопросе раз и навсегда:

  • «∪» — это знак объединения. По сути, это стилизованная буква «U», которая пришла к нам из английского языка и является аббревиатурой от «Union», т.е. «Объединения».
  • «∩» — это знак пересечения. Эта хрень ниоткуда не пришла, а просто возникла как противопоставление к «∪».

Чтобы ещё проще было запомнить, просто пририсуйте к этим знакам ножки, чтобы получились бокалы (вот только не надо сейчас обвинять меня в пропаганде наркомании и алкоголизма: если вы всерьёз изучаете этот урок, то вы уже наркоман):

Разница между пересечением и объединением множеств

В переводе на русский это означает следующее: объединение (совокупность) включает в себя элементы из обоих множеств, поэтому никак не меньше каждого из них; а вот пересечение (система) включает в себя лишь те элементы, которые одновременно находятся и в первом множестве, и во втором. Поэтому пересечение множеств никогда не бывает больше множеств-исходников.

Так стало понятнее? Вот и отлично. Переходим к практике.

Задача. Решите неравенство:

\[\left| 3x+1 \right| \gt 5-4x\]

Решение. Действуем по схеме:

\[\left| 3x+1 \right| \gt 5-4x\Rightarrow \left[ \begin{align} & 3x+1 \gt 5-4x \\ & 3x+1 \lt -\left(5-4x \right) \\\end{align} \right.\]

Решаем каждое неравенство совокупности:

\[\left[ \begin{align} & 3x+4x \gt 5-1 \\ & 3x-4x \lt -5-1 \\ \end{align} \right.\]

\[\left[ \begin{align} & 7x \gt 4 \\ & -x \lt -6 \\ \end{align} \right.\]

\[\left[ \begin{align} & x \gt 4/7\ \\ & x \gt 6 \\ \end{align} \right.\]

Отмечаем каждое полученное множество на числовой прямой, а затем объединяем их:

Объединение множеств

Совершенно очевидно, что ответом будет $x\in \left(\frac{4}{7};+\infty \right)$

Ответ: $x\in \left(\frac{4}{7};+\infty \right)$

Задача. Решите неравенство:

\[\left| {{x}^{2}}+2x-3 \right| \gt x\]

Решение. Ну что? Да ничего — всё то же самое. Переходим от неравенства с модулем к совокупности двух неравенств:

\[\left| {{x}^{2}}+2x-3 \right| \gt x\Rightarrow \left[ \begin{align} & {{x}^{2}}+2x-3 \gt x \\ & {{x}^{2}}+2x-3 \lt -x \\\end{align} \right.\]

Решаем каждое неравенство. К сожалению, корни там будут не оч:

\[\begin{align} & {{x}^{2}}+2x-3 \gt x; \\ & {{x}^{2}}+x-3 \gt 0; \\ & D=1+12=13; \\ & x=\frac{-1\pm \sqrt{13}}{2}. \\\end{align}\]

Во втором неравенстве тоже немного дичи:

\[\begin{align} & {{x}^{2}}+2x-3 \lt -x; \\ & {{x}^{2}}+3x-3 \lt 0; \\ & D=9+12=21; \\ & x=\frac{-3\pm \sqrt{21}}{2}. \\\end{align}\]

Теперь нужно отметить эти числа на двух осях — по одной оси для каждого неравенства. Однако отмечать точки нужно в правильном порядке: чем больше число, тем дальше сдвигам точку вправо.

И вот тут нас ждёт подстава. Если с числами $\frac{-3-\sqrt{21}}{2} \lt \frac{-1-\sqrt{13}}{2}$ всё ясно (слагаемые в числителе первой дроби меньше слагаемых в числителе второй, поэтому сумма тоже меньше), с числами $\frac{-3-\sqrt{13}}{2} \lt \frac{-1+\sqrt{21}}{2}$ тоже не возникнет затруднений (положительное число заведомо больше отрицательного), то вот с последней парочкой всё не так однозначно. Что больше: $\frac{-3+\sqrt{21}}{2}$ или $\frac{-1+\sqrt{13}}{2}$? От ответа на этот вопрос будет зависеть расстановка точек на числовых прямых и, собственно, ответ.

Поэтому давайте сравнивать:

\[\begin{matrix} \frac{-1+\sqrt{13}}{2}\vee \frac{-3+\sqrt{21}}{2} \\ -1+\sqrt{13}\vee -3+\sqrt{21} \\ 2+\sqrt{13}\vee \sqrt{21} \\\end{matrix}\]

Мы уединили корень, получили неотрицательные числа с обеих сторон неравенства, поэтому вправе возвести обе стороны в квадрат:

\[\begin{matrix} {{\left(2+\sqrt{13} \right)}^{2}}\vee {{\left(\sqrt{21} \right)}^{2}} \\ 4+4\sqrt{13}+13\vee 21 \\ 4\sqrt{13}\vee 3 \\\end{matrix}\]

Думаю, тут и ежу понятно, что $4\sqrt{13} \gt 3$, поэтому $\frac{-1+\sqrt{13}}{2} \gt \frac{-3+\sqrt{21}}{2}$, окончательно точки на осях будут расставлены вот так:

Случай некрасивых корней

Напомню, мы решаем совокупность, поэтому в ответ пойдёт объединение, а не пересечение заштрихованных множеств.

Ответ: $x\in \left(-\infty ;\frac{-3+\sqrt{21}}{2} \right)\bigcup \left(\frac{-1+\sqrt{13}}{2};+\infty \right)$

Как видите, наша схема прекрасно работает как для простых задач, так и для весьма жёстких. Единственное «слабое место» в таком подходе — нужно грамотно сравнивать иррациональные числа (и поверьте: это не только корни). Но вопросам сравнения будет посвящён отдельный (и очень серьёзный урок). А мы идём дальше.

3. Неравенства с неотрицательными «хвостами»

Вот мы и добрались до самого интересного. Это неравенства вида:

\[\left| f \right| \gt \left| g \right|\]

Вообще говоря, алгоритм, о котором мы сейчас поговорим, верен н только для модуля. Он работает во всех неравенствах, где слева и справа стоят гарантированно неотрицательные выражения:

Что делать с этими задачами? Просто помните:

В неравенствах с неотрицательными «хвостами» можно возводить обе части в любую натуральную степень. Никаких дополнительных ограничений при этом не возникнет.

Прежде всего нас будет интересовать возведение в квадрат — он сжигает модули и корни:

\[\begin{align} & {{\left(\left| f \right| \right)}^{2}}={{f}^{2}}; \\ & {{\left(\sqrt{f} \right)}^{2}}=f. \\\end{align}\]

Вот только не надо путать это с извлечением корня из квадрата:

\[\sqrt{{{f}^{2}}}=\left| f \right|\ne f\]

Бесчисленное множество ошибок было допущено в тот момент, когда ученик забывал ставить модуль! Но это совсем другая история (это как бы иррациональные уравнения), поэтому не будем сейчас в это углубляться. Давайте лучше решим парочку задач:

Задача. Решите неравенство:

\[\left| x+2 \right|\ge \left| 1-2x \right|\]

Решение. Сразу заметим две вещи:

  1. Это нестрогое неравенство. Точки на числовой прямой будут выколоты.
  2. Обе стороны неравенства заведомо неотрицательны (это свойство модуля: $\left| f\left(x \right) \right|\ge 0$).

Следовательно, можем возвести обе части неравенства в квадрат, чтобы избавиться от модуля и решать задачу обычным методом интервалов:

\[\begin{align} & {{\left(\left| x+2 \right| \right)}^{2}}\ge {{\left(\left| 1-2x \right| \right)}^{2}}; \\ & {{\left(x+2 \right)}^{2}}\ge {{\left(2x-1 \right)}^{2}}. \\\end{align}\]

На последнем шаге я слегка схитрил: поменял последовательность слагаемых, воспользовавшись чётностью модуля (по сути, умножил выражение $1-2x$ на −1).

\[\begin{align} & {{\left(2x-1 \right)}^{2}}-{{\left(x+2 \right)}^{2}}\le 0; \\ & \left(\left(2x-1 \right)-\left(x+2 \right) \right)\cdot \left(\left(2x-1 \right)+\left(x+2 \right) \right)\le 0; \\ & \left(2x-1-x-2 \right)\cdot \left(2x-1+x+2 \right)\le 0; \\ & \left(x-3 \right)\cdot \left(3x+1 \right)\le 0. \\\end{align}\]

Решаем методом интервалов. Переходим от неравенства к уравнению:

\[\begin{align} & \left(x-3 \right)\left(3x+1 \right)=0; \\ & {{x}_{1}}=3;{{x}_{2}}=-\frac{1}{3}. \\\end{align}\]

Отмечаем найденные корни на числовой прямой. Ещё раз: все точки закрашены, поскольку исходное неравенство — нестрогое!

Избавление от знака модуля

Напомню для особо упоротых: знаки мы берём из последнего неравенства, которое было записано перед переходом к уравнению. И закрашиваем области, требуемые в том же неравенстве. В нашем случае это $\left(x-3 \right)\left(3x+1 \right)\le 0$.

Ну вот и всё. Задача решена.

Ответ: $x\in \left[ -\frac{1}{3};3 \right]$.

Задача. Решите неравенство:

\[\left| {{x}^{2}}+x+1 \right|\le \left| {{x}^{2}}+3x+4 \right|\]

Решение. Делаем всё то же самое. Я не буду комментировать — просто посмотрите на последовательность действий.

Возводим в квадрат:

\[\begin{align} & {{\left(\left| {{x}^{2}}+x+1 \right| \right)}^{2}}\le {{\left(\left| {{x}^{2}}+3x+4 \right| \right)}^{2}}; \\ & {{\left({{x}^{2}}+x+1 \right)}^{2}}\le {{\left({{x}^{2}}+3x+4 \right)}^{2}}; \\ & {{\left({{x}^{2}}+x+1 \right)}^{2}}-{{\left({{x}^{2}}+3x+4 \right)}^{2}}\le 0; \\ & \left({{x}^{2}}+x+1-{{x}^{2}}-3x-4 \right)\times \\ & \times \left({{x}^{2}}+x+1+{{x}^{2}}+3x+4 \right)\le 0; \\ & \left(-2x-3 \right)\left(2{{x}^{2}}+4x+5 \right)\le 0. \\\end{align}\]

Метод интервалов:

\[\begin{align} & \left(-2x-3 \right)\left(2{{x}^{2}}+4x+5 \right)=0 \\ & -2x-3=0\Rightarrow x=-1,5; \\ & 2{{x}^{2}}+4x+5=0\Rightarrow D=16-40 \lt 0\Rightarrow \varnothing . \\\end{align}\]

Всего один корень на числовой прямой:

Ответ — целый интервал

Ответ: $x\in \left[ -1,5;+\infty \right)$.

Небольшое замечание насчёт последней задачи. Как точно подметил один мой ученик, оба подмодульных выражения в данном неравенстве заведомо положительны, поэтому знак модуля можно без ущерба для здоровья опустить.

Но это уже совсем другой уровень размышлений и другой подход — его условно можно назвать методом следствий. О нём — в отдельном уроке. А сейчас перейдём к финальной части сегодняшнего урока и рассмотрим универсальный алгоритм, который работает всегда. Даже тогда, когда все предыдущие подходы оказались бессильны.:)

4. Метод перебора вариантов

А что, если все эти приёмы не помогут? Если неравенство не сводится неотрицательным хвостам, если уединить модуль не получается, если вообще боль-печаль-тоска?

Тогда на сцену выходит «тяжёлая артиллерия» всей математики — метод перебора. Применительно к неравенствам с модулем выглядит он так:

  1. Выписать все подмодульные выражения и приравнять их к нулю;
  2. Решить полученные уравнения и отметить найденные корни на одной числовой прямой;
  3. Прямая разобьётся на несколько участков, внутри которого каждый модуль имеет фиксированный знак и потому однозначно раскрывается;
  4. Решить неравенство на каждом таком участке (можно отдельно рассмотреть корни-границы, полученные в пункте 2 — для надёжности). Результаты объединить — это и будет ответ.:)

Ну как? Слабо? Легко! Только долго. Посмотрим на практике:

Задача. Решите неравенство:

\[\left| x+2 \right| \lt \left| x-1 \right|+x-\frac{3}{2}\]

Решение. Эта хрень не сводится к неравенствам вида $\left| f \right| \lt g$, $\left| f \right| \gt g$ или $\left| f \right| \lt \left| g \right|$, поэтому действуем напролом.

Выписываем подмодульные выражения, приравниваем их к нулю и находим корни:

\[\begin{align} & x+2=0\Rightarrow x=-2; \\ & x-1=0\Rightarrow x=1. \\\end{align}\]

Итого у нас два корня, которые разбивают числовую прямую на три участка, внутри которых каждый модуль раскрывается однозначно:

Разбиение числовой прямой нулями подмодульных функций

Рассмотрим каждый участок отдельно.

1. Пусть $x \lt -2$. Тогда оба подмодульных выражения отрицательны, и исходное неравенство перепишется так:

\[\begin{align} & -\left(x+2 \right) \lt -\left(x-1 \right)+x-1,5 \\ & -x-2 \lt -x+1+x-1,5 \\ & x \gt 1,5 \\\end{align}\]

Получили довольно простое ограничение. Пересечём его с исходным предположением, что $x \lt -2$:

\[\left\{ \begin{align} & x \lt -2 \\ & x \gt 1,5 \\\end{align} \right.\Rightarrow x\in \varnothing \]

Очевидно, что переменная $x$ не может одновременно быть меньше −2, но больше 1,5. Решений на этом участке нет.

1.1. Отдельно рассмотрим пограничный случай: $x=-2$. Просто подставим это число в исходное неравенство и проверим: выполняется ли оно?

\[\begin{align} & {{\left. \left| x+2 \right| \lt \left| x-1 \right|+x-1,5 \right|}_{x=-2}} \\ & 0 \lt \left| -3 \right|-2-1,5; \\ & 0 \lt 3-3,5; \\ & 0 \lt -0,5\Rightarrow \varnothing . \\\end{align}\]

Очевидно, что цепочка вычислений привела нас к неверному неравенству. Следовательно, исходное неравенство тоже неверно, и $x=-2$ не входит в ответ.

2. Пусть теперь $-2 \lt x \lt 1$. Левый модуль уже раскроется с «плюсом», но правый — всё ещё с «минусом». Имеем:

\[\begin{align} & x+2 \lt -\left(x-1 \right)+x-1,5 \\ & x+2 \lt -x+1+x-1,5 \\& x \lt -2,5 \\\end{align}\]

Снова пересекаем с исходным требованием:

\[\left\{ \begin{align} & x \lt -2,5 \\ & -2 \lt x \lt 1 \\\end{align} \right.\Rightarrow x\in \varnothing \]

И снова пустое множество решений, поскольку нет таких чисел, которые одновременно меньше −2,5, но больше −2.

2.1. И вновь частный случай: $x=1$. Подставляем в исходное неравенство:

\[\begin{align} & {{\left. \left| x+2 \right| \lt \left| x-1 \right|+x-1,5 \right|}_{x=1}} \\ & \left| 3 \right| \lt \left| 0 \right|+1-1,5; \\ & 3 \lt -0,5; \\ & 3 \lt -0,5\Rightarrow \varnothing . \\\end{align}\]

Аналогично предыдущему «частному случаю», число $x=1$ явно не входит в ответ.

3. Последний кусок прямой: $x \gt 1$. Тут все модули раскрываются со знаком «плюс»:

\[\begin{align} & x+2 \lt x-1+x-1,5 \\ & x+2 \lt x-1+x-1,5 \\ & x \gt 4,5 \\\end{align}\]

И вновь пересекаем найденное множество с исходным ограничением:

\[\left\{ \begin{align} & x \gt 4,5 \\ & x \gt 1 \\\end{align} \right.\Rightarrow x\in \left(4,5;+\infty \right)\]

Ну наконец-то! Мы нашли интервал, который и будет ответом.

Ответ: $x\in \left(4,5;+\infty \right)$

Напоследок — одно замечание, которое, возможно, убережёт вас от глупых ошибок при решении реальных задач:

Решения неравенств с модулями обычно представляют собой сплошные множества на числовой прямой — интервалы и отрезки. Гораздо реже встречаются изолированные точки. И ещё реже случается так, что границ решения (конец отрезка) совпадает с границей рассматриваемого диапазона.

Следовательно, если границы (те самые «частные случаи») не входят в ответ, то почти наверняка не войдут в ответ и области слева-справа от этих границ. И напротив: граница вошла в ответ — значит, и какие-то области вокруг неё тоже будут ответами.

Помните об этом, когда проверяете свои решения.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!